
11th International Workshop on
Higher-Order Rewriting (HOR 2023)

Carsten Fuhs (Editor)

HOR 2023, 4th July 2023, Rome, Italy

Editor’s Preface

This volume contains the informal proceedings of the 11th International Workshop on Higher-
Order Rewriting, to be held on 4th July 2023 in Rome, Italy:

https://hor2023.github.io/

HOR is a forum to present work concerning all aspects of higher-order rewriting. The aim is
to provide an informal and friendly setting to discuss recent work and work in progress. The
following is a non-exhaustive list of topics for the workshop:

• Applications: proof checking, theorem proving, generic programming, declarative program-
ming, program transformation, automated termination/confluence/equivalence analysis
tools.

• Foundations: pattern matching, unification, strategies, narrowing, termination, syntactic
properties, type theory, complexity of derivations.

• Frameworks: term rewriting, conditional rewriting, graph rewriting, net rewriting, com-
parisons of different frameworks.

• Implementation: explicit substitution, rewriting tools, compilation techniques.

• Semantics: semantics of higher-order rewriting, categorical rewriting, higher-order abstract
syntax, games and rewriting.

The International Workshop on Higher-Order Rewriting has played an important role in the
last two decades of developments in the field. Starting in 2002, the workshop took place loosely
every other year:

HOR 2002 (Copenhagen, Denmark), affiliated with FLoC 2002
HOR 2004 (Aachen, Germany), affiliated with RDP 2004
HOR 2006 (Seattle, USA), affiliated with FLoC 2006
HOR 2007 (Paris, France), affiliated with RDP 2007
HOR 2010 (Edinburgh, UK), affiliated with FLoC 2010
HOR 2012 (Nagoya, Japan), affiliated with RTA 2012
HOR 2014 (Vienna, Austria), affiliated with FLoC 2014
HOR 2016 (Porto, Portugal), affiliated with FSCD 2016
HOR 2018 (Oxford, UK), affiliated with FLoC 2018
HOR 2019 (Dortmund, Germany), affiliated with FSCD 2019

Information about previous editions can be found at https://hor.irif.fr/.

HOR 2023 is affiliated with the 8th International Conference on Formal Structures for
Computation and Deduction (FSCD 2023) and the 29th International Conference on Automated
Deduction (CADE-29).

The 11th Workshop on Higher-Order Rewriting features six regular extended abstracts,
contained in this volume, and an invited talk by Pablo Barenbaum (Universidad de Buenos Aires,
Argentina) on Quantitative Types for Useful Reduction.

I would like to thank everyone who helped to prepare and run the workshop: the participants,
the programme committee, the steering committee, and the local organisers.

Rome, July 2023 Carsten Fuhs

ii

https://hor2023.github.io/
https://hor.irif.fr/

Programme Committee

Takahito Aoto Niigata University, Japan
Maribel Fernández King’s College London, United Kingdom
Carsten Fuhs (Chair) Birkbeck, University of London, United Kingdom
Delia Kesner Université Paris Cité, France
Cynthia Kop Radboud Universiteit Nijmegen, The Netherlands
Damiano Mazza Université Paris 13, France

Steering Committee

Delia Kesner Université Paris Cité, France
Femke van Raamsdonk Vrije Universiteit Amsterdam, The Netherlands

iii

Table of Contents

A Deeper Study of λ!-Calculus Simulations 1
Victor Arrial

Confluence Criterion for Non Left-Linearity in a Beta/Eta-Free Reformulation of HRSs 6
Thiago Felicissimo

Higher-Order LCTRSs and Their Termination 12
Liye Guo and Cynthia Kop

Modular Termination for Second-Order Rewriting Systems and Application to Effect Handlers 16
Makoto Hamana

The algebraic lambda-calculus is a conservative extension of the ordinary lambda-calculus 21
Axel Kerinec and Lionel Vaux Auclair

Nijn/Onijn: A New Certification Engine for Higher-Order Termination 27
Cynthia Kop, Deivid Vale and Niels van der Weide

iv

A Deeper Study of λ!-Calculus Simulations

Victor Arrial

Université Paris Cité, CNRS, IRIF, France

Abstract
In this paper we study properties of the encodings of CBN and CBV into a CBPV like

language

1 Introduction

Bang Calculus. P.B. Levy introduced Call-by-Push-Value (CBPV) [13] as a subsuming lan-
guage, so that different evaluation strategies of the λ-calculus can be captured in a uniform
framework by the simple use of two primitives: thunk (to pause a computation) and force (to
resume a computation). This mechanism is powerful enough to encode, in particular, Call-
by-Name (CBN) and Call-by-Value [14] (CBV). The original CBPV has been introduced in a
simply typed framework, but the underlying (untyped) syntax and operational semantics –the
ones we are interested in here– already provide a powerful untyped subsuming mechanism. De-
spite that, CBN and CBV have always been studied notably by developing different techniques
for one and the other. Some rare exceptions are [5, 8, 12, 3], where some particular property
for CBN/CBV (e.g. quantitative typing, factorization, tight typing, inhabitation) is derived
from the corresponding property for a language that is a restriction of CBPV, via a suitable
CBN/CBV encoding. Such a language can be the bang calculus [7, 10, 11] (in turn inspired
by Ehrhard [6], combining ideas from Levy’s CBPV [13] and Girard’s linear logic [9]), or its
variant the λ!-calculus [5, 12] where reduction rules act at a distance.

Normal Form, Simulation and Reverse Simulation. In this work, we are interested in
the preservation of the reduction relation by the encoding. On one hand and from a static point
of view, one may consider the preservation of normal forms: t is a normal form if and only
if te is a normal form, where te is the e-encoding of t. On the second hand and from a more
dynamical point of view, two properties can naturally be considered. Simulation: reduction
steps are transported into the subsuming paradigm (i.e. if t → u in the subsumed language
then te → ue in the subsuming language). Reverse simulation: reduction steps are recovered
from the subsuming paradigm (i.e. if te → ue in the subsuming language then t → u in the
subsumed language).

Some of these properties have been studied for CBPV [13], bang calculus [10] and λ!-calculus
[5] but a full analysis is still missing. In this work, we look into the normal form preservation,
simulation and reverse simulation for the λ!-calculus. In particular, taking into account distance
is not a trivial matter in that it requires modifications of the call-by-value encoding.

2 The λ!-Calculus

We now briefly introduce the λ!-calculus [5]. Given a countably infinite set X of variables
x, y, z, ..., the set Λ! of terms is given by the following inductive definition:

(Terms) t, u ::= x ∈ X | λx.t | tu | t[x\u] | !t | der(t)

1

xcbn = x xcbv = !x

(λx.t)
cbn

= λx.tcbn (λx.t)
cbv

= !λx.tcbv

(tu)
cbn

= tcbn!ucbn (tu)
cbv

=

{
L ⟨s⟩ucbv if tcbv = L ⟨!s⟩
der(tcbv)ucbv otherwise

(t[x\u])cbn = tcbn[x\!ucbn] (t[x\u])cbv = tcbv[x\ucbv]

Figure 1: CbN and CbV Embeddings for λ!-Calculus [5]

The set Λ! includes λ-terms (variables x, abstractions λx.t and applications tu) as well as three
new constructors: a closure t[x\u] representing a pending explicit substitution [x\u] on a term
t, a bang !t to freeze the execution of t, and a dereliction der(t) to fire again the frozen term t.
The usual notion of α-conversion [4] is extended to the whole set Λ!, and terms are identified up
to α-conversion. We denote by t{x := v} the usual (capture avoiding) meta-level substitution
of the term u for all free occurrences of the variable x in the term t.

The sets of list contexts L, surface contexts S and full contexts F, which can be seen as terms
containing exactly one hole ⋄, are inductively defined as follows:

(List) L ::= ⋄ | L[x\t]
(Surface) S ::= ⋄ | λx.S | S t | t S | S[x\t] | t[x\S] | der(S)

(Full) F ::= ⋄ | λx.F | F t | t F | F[x\t] | t[x\F] | der(F) | !F

The hole can occur everywhere in F, while in S it cannot occur under a !. We write L ⟨t⟩ for the
term obtained by replacing the hole in L with the term t and similarly for S and F.

The following three rewriting rules are the base components of our reduction relations:

L ⟨λx.t⟩u 7→dB L ⟨t[x\u]⟩ t[x\L ⟨!u⟩] 7→s! L ⟨t{x := u}⟩ der(L ⟨!t⟩) 7→d! L ⟨t⟩

Rule dB (resp. s!) is assumed to be capture free, so no free variable of u (resp. t) is captured
by the context L. The rule dB fires a standard β-redex and generates an explicit substitution.
The rule s! fires an explicit substitution provided that its argument is a bang. The rule d!

defrosts a frozen term. In all of these rewrite rules, the reduction acts at a distance [1]: the
main constructors involved in the rule can be separated by a finite –possibly empty– list L of
explicit substitutions. This mechanism unblocks redexes that otherwise would be stuck, e.g.
(λx.x)[y\w]!z 7→dB x[x\!z][y\w] fires a β-redex by taking L = ⋄[y\w] as the list context in
between the function λx.x and the argument !z.

The surface reduction relation →S is the surface closure of any of the three rewrite rules dB,
s! and d!, i.e. →S only fires redexes in surface contexts, and not under bang. Similarly, the full
reduction relation →F is the full closure of any of the rewrite rules, so that →F reduces under
full contexts and thus the bang loses its freezing behavior. For example,

(λx.!der(!x))!y →S (!der(!x))[x\!y] →S !der(!y) →F !y

Note that the first two steps are also →F-steps, while the last step is not an →S-step. More
generally, we have →S⊆→F. Moreover, we denote by ↠S (resp. ↠F) the reflexive and transitive
closure of →S (resp. →F).

2

3 Call-by-Name – λn

We now briefly introduce the (call-by-name) λn-calculus. Given a countably infinite set X of
variables x, y, z, ..., the set Λn of terms is given by the following inductive definition:

(Terms) t, u ::= x ∈ X | λx.t | tu | t[x\u]

Terms are identified up the the usual notion of α-conversion [4] and we denote by t{x := v}
the expected (capture avoiding) meta-level substitution. The sets of list contexts L, surface
contexts N and full contexts C, are inductively defined as follows:

(List) L ::= ⋄ | L[x\t]
(Surface) N ::= ⋄ | λx.N | N t | N[x\t]

(Full) C ::= ⋄ | λx.C | C t | t C | C[x\t] | t[x\C]

The hole can occur everywhere in C, while in N it cannot occur in the argument of an application
nor an explicit substitution.

The following rewriting rules are the base components of our reduction relations:

L ⟨λx.t⟩u 7→dB L ⟨t[x\u]⟩ t[x\u] 7→s t{x := u}

The surface reduction relation →N (resp. full reduction relation →C) is defined as the surface
closure N (resp. full closure C) of the rules dB and s presented above. Moreover, we denote by
↠N (resp. ↠C) the reflexive transitive closure of the surface reduction →N (resp. full reduction
→C). Finally, a term t ∈ Λn is said in to be a surface (resp. full) normal form if there is no u
such that t →N u (resp. t →C u).

The embedding ·cbn presented in (Fig. 1) has been shown [5] to preserve surface normal
forms. However, this property can be strengthen to also include full normal forms:

Theorem 3.1 (Normal Forms Preservation). Let t ∈ Λn, then t is a surface (resp. full) normal
form if and only if tcbn is a surface (resp. full) normal form.

Rather than just looking at static properties, we are actually interested in dynamic ones.
In particular, surface reduction is well transported into the bang calculus (simulation property
in [5]). Interestingly, we show that it also holds for the full reduction. Moreover, we show that
reverse simulation is also verified for both surface and full reductions.

Theorem 3.2 (Surface/Full Simulation and Reverse Simulation). Let t, u ∈ Λn, then:

• t →N u (resp. t ↠N u) if and only if tcbn →S ucbn (resp. tcbn ↠S ucbn).

• t →C u (resp. t ↠C u) if and only if tcbn →F u
cbn (resp. tcbn ↠F u

cbn).

Moreover, the number of dB (resp. s) steps exactly matches the number of dB (resp. s!) steps.

4 Call-by-Value – λvsub

We now briefly introduce the (distant call-by-value) λvsub-calculus [2]. The set Λv of terms is
given by the following inductive definitions:

(Terms) t, u ::= v | tu | t[x\u]
(Values) v ::= x ∈ X | λx.t

3

In Λn: (λx.((λy.y)z))z ̸→V (λx.(y[y\z]))z
y·cbv

y·cbv

In Λ!: (λx.((λy.!y) (!z))) (!z) →S (λx.((!y)[y\!z])) (!z)

Figure 2: A Counterexample of the CbV Reverse Simulation Property

xCBV = !x

(λx.t)
CBV

= !λx.!tCBV

(tu)
CBV

=

{
der(L ⟨s⟩uCBV) if tCBV = L ⟨!s⟩
der(der(tCBV)uCBV) otherwise

(t[x\u])CBV = tCBV[x\uCBV]

Figure 3: A New Call-by-Value Embedding for Bang-calculus

Again, we consider the set of terms up to the usual α-conversion [4] and we denote by t{x := v}
the expected (capture avoiding) meta-level substitution. The sets of list contexts L, surface
contexts V and full contexts C, are inductively defined as follows:

(List) L ::= ⋄ | L[x\t]
(Surface) V ::= ⋄ | V t | t V | V[x\t] | t[x\V]

(Full) C ::= ⋄ | λx.C | C t | t C | C[x\t] | t[x\C]

In particular, the hole can occur everywhere in C, while in V it cannot occur under an abstraction.
The following rewriting rules are the base components of our reduction relations.

L ⟨λx.t⟩u 7→dB L ⟨t[x\u]⟩ t[x\L ⟨v⟩] 7→sV L ⟨t{x := v}⟩

In both these rules the reduction acts at a distance in order to deal with stuck redexes since
this phenomenon also appear in call-by-value. The surface reduction relation →V (resp. full
reduction relation →C) is defined as the surface closure V (resp. full closure C) of the rules dB
and sV presented above. We denote by ↠V (resp. ↠C) the reflexive transitive closure of the
surface reduction →V (resp. full reduction →C) and finally, a term t ∈ Λv is said in to be a
surface (resp. full) normal form if there is no u such that t →V u (resp. t →C u).

The embedding ·cbv presented in Fig. 1 preserves surface normal forms and satisfies the
simulation property for the surface reduction [5]. However, reverse simulation fails for the
surface reduction. A counter example can be found in Fig 2.

We introduce in Fig. 3 a new call-by-value embedding ·CBV solving the issue. The main
difference can be found in the abstraction case where two ! are used instead of one. The
application is then adapted by placing an additional dereliction on the outside. This dereliction
gets rid of the bang on the body of the abstraction once the dB redex has been fired. This
restores access to the body of the previously existing abstraction, matching the phenomenon
at play in distance.

This new embedding has the same good static property of preserving the surface normal
forms and is additionally shown to preserve full normal forms.

Theorem 4.1 (Normal Forms Preservation). Let t ∈ Λv, then t is a surface (resp. full) normal
form if and only if tCBV is a surface (resp. full) normal form.

4

Moreover and as intended, this new encoding is satisfying both simulation and reverse
simulation properties for both surface and full reductions:

Theorem 4.2 (Surface/Full Simulation and Reverse Simulation). Let t, u ∈ Λvsub, then:

• t →V u (resp. t ↠V u) if and only if tCBV ↠S uCBV.

• t →C u (resp. t ↠C u) if and only if tCBV ↠F u
CBV.

where the number of dB (resp. s) steps exactly matches the number of dB (resp. s!) steps.

References

[1] Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Anuj Dawar and Helmut
Veith, editors, Proceedings of 24th EACSL Conference on Computer Science Logic, volume 6247
of LNCS, pages 381–395. Springer, August 2010.

[2] Beniamino Accattoli and Luca Paolini. Call-by-value solvability, revisited. In Tom Schrijvers and
Peter Thiemann, editors, FLOPS, volume 7294 of LNCS, pages 4–16. Springer, 2012.

[3] Victor Arrial, Giulio Guerrieri, and Delia Kesner. Quantitative inhabitation for different lambda
calculi in a unifying framework. Proc. ACM Program. Lang., 7(POPL):1483–1513, 2023.

[4] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in logic
and the foundation of mathematics. North-Holland, Amsterdam, revised edition, 1984.

[5] Antonio Bucciarelli, Delia Kesner, Alejandro Ŕıos, and Andrés Viso. The bang calculus revis-
ited. In Keisuke Nakano and Konstantinos Sagonas, editors, Functional and Logic Programming -
15th International Symposium, FLOPS 2020, Akita, Japan, September 14-16, 2020, Proceedings,
volume 12073 of Lecture Notes in Computer Science, pages 13–32. Springer, 2020.

[6] Thomas Ehrhard. Call-by-push-value from a linear logic point of view. In Peter Thiemann, editor,
ESOP 2016, volume 9632 of Lecture Notes in Computer Science, pages 202–228. Springer, 2016.

[7] Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus generaliz-
ing call-by-name and call-by-value. In James Cheney and Germán Vidal, editors, Proceedings of the
18th International Symposium on Principles and Practice of Declarative Programming, Edinburgh,
United Kingdom, September 5-7, 2016, pages 174–187. ACM, 2016.

[8] Claudia Faggian and Giulio Guerrieri. Factorization in call-by-name and call-by-value calculi via
linear logic. In Stefan Kiefer and Christine Tasson, editors, FOSSACS 2021, volume 12650 of
Lecture Notes in Computer Science, pages 205–225. Springer, 2021.

[9] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[10] Giulio Guerrieri and Giulio Manzonetto. The bang calculus and the two girard’s translations. In
Proceedings Joint International Workshop on Linearity & Trends in Linear Logic and Applications,
Linearity-TLLA@FLoC 2018, volume 292 of EPTCS, pages 15–30, 2018.

[11] Giulio Guerrieri and Federico Olimpieri. Categorifying non-idempotent intersection types. In
Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer
Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference), volume
183 of LIPIcs, pages 25:1–25:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[12] Delia Kesner and Andrés Viso. Encoding tight typing in a unified framework. CoRR,
abs/2105.00564, 2021.

[13] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, editor, Typed
Lambda Calculi and Applications, pages 228–243, Berlin, Heidelberg, 1999. Springer Berlin Hei-
delberg.

[14] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.,
1(2):125–159, 1975.

5

A Confluence Criterion for Non Left-Linearity

in a 𝛽[-Free Reformulation of HRSs

Thiago Felicissimo

Université Paris-Saclay, INRIA project Deducteam, LMF, ENS Paris-Saclay
thiago.felicissimo@inria.fr

Abstract

We give a criterion for showing confluence of non-left linear (Pattern) Higher-order
Rewrite Systems (HRSs). More precisely, our criterion concerns 2nd order signatures and
allows one to show object confluence, that is, confluence when restricting to terms only
with variables of order 0. As a second contribution, we give a reformulation of HRSs in
which one never needs to speak of meta-level 𝛽[-equality.

1 Introduction

When proving confluence in Nipkow’s (Pattern) Higher-order Rewrite Systems (HRSs) [8],
one generally has to be in one of the two following cases. If the rewrite system being
considered is (1) strongly normalizing (s.n.), then by the critical pair lemma it suffices
to check that critical pairs are joinable [8]. In most situations this is too strong of a
requirement, but fortunately if the system is (2) left-linear then many criteria exist, such
as orthogonality [9] and development-closedness [10]. If however neither (1) nor (2) hold,
then no known criteria allows for showing confluence. This is problematic even when
non-linearity is only necessary for silly reasons, such as in the following example.

Σ_𝜋↑ = _ : (t : tm → tm) → tm, @ : (t : tm, u : tm) → tm, ↑: (n : lvl, m : lvl, t : tm) → tm,

𝜋 : (n : lvl, a : tm, b : tm → tm) → tm, 0 : lvl, S : (n : lvl) → lvl

R_𝜋↑ = ↑mn (𝜋n (A, 𝑥.B(𝑥))) ↦−→ 𝜋m (↑mn (A), 𝑥. ↑mn (B(𝑥)))
_(𝑥.t(𝑥))@u ↦−→ t(u)

↑nn (t) ↦−→ t

↑pm (↑mn (t)) ↦−→↑pn (t)
Example 1. Consider the signature (where tm, lvl are sorts) and the rewrite system given
above, containing an excerpt of the rules used when defining a cumulative Tarski-style
universe — similar ones can be found in [3]. Because of the beta rule, the rewrite system
is not s.n. and because of the other rules the system is also non left-linear. Non-linearity
is only used to obtain a finite signature, a pre-requisite for some applications.

Actually, there is no hope of showing confluence for R_𝜋↑ , given that it is possible to
simulate the rewrite system R𝑘 = {_(𝑥.t(𝑥))@u ↦−→ t(u), 𝑓 (t, t) ↦−→ 𝑎} shown by Klop
to be not confluent [7]. Indeed, by taking variables 𝑥 : tm → lvl, 𝑦 : tm we can translate

⟦ 𝑓 (𝑡, 𝑢)⟧ :=↑𝑥 (⟦𝑢⟧)
𝑥 (⟦𝑡⟧) (𝑦) and ⟦𝑎⟧ := 𝑦, and then show that 𝑡 −→ 𝑢 implies ⟦𝑡⟧ −→ ⟦𝑢⟧ and

⟦𝑡⟧ −→ 𝑢 implies 𝑡 −→ 𝑢′ for some 𝑢′ with ⟦𝑢′⟧ = 𝑢. Using these two facts it is easy to see
that the confluence of R_𝜋↑ implies that of R𝑘 .

This counterexample however makes essential use of the fact that we have access to a
variable 𝑥 : tm → lvl, allowing us to perform a beta step inside a non-linear position of the
lhs in ↑nn (t) ↦−→ t. However, in most applications one is only interested in terms containing
0-order variables, and higher-order variables are only used as metavariables to define the
rewrite rules. If we instead restrict our attention to confluence over terms containing only
variables of order 0 (a property we will call object confluence), can we prove that R_𝜋↑
satisfies this property?

In this article, we propose a criterion that allows us to do that. More precisely, given
two rewrite systems R𝑙 and R𝑛𝑙 over a signature of order at most 2 such that (1) both are

6

object confluent, (2) R𝑙 is linear, (3) there are no critical pairs between them and (4) the
sorts of non-linear lhs variables of R𝑛𝑙 are inaccessible from the sorts of the rules in R𝑙 ,
our criterion allows one to conclude object confluence of their union. The proof is a simple
adaptation of the proof of confluence by orthogonality, by using condition (4) to show that
a R𝑙 step cannot destroy a R𝑛𝑙 redex. As shown in the end of the article, our criterion
proves the object confluence of Example 1.

As a second contribution, we give a reformulation of Nipkow’s HRSs in which one
never needs to talk about 𝛽[-equivalence. This is achieved by adopting a canonical forms
only presentation of the simply-typed _-calculus, and replacing regular substitution by
hereditary substitution [6]. This avoids the technicalities of switching 𝛽[representatives
and allows for a presentation of higher-order rewriting that we believe can be clearer.

Related work The problem of higher-order confluence with non-left linear rules has
been studied by [2] and [3] in the setting of rewriting union 𝛽. The notion of confinement
introduced in [2] was an essential inspiration for us. We omit a detailed discussion because
of size constraints, but remark that our criterion’s proof is much shorter and less technical.

2 Higher-order rewriting

We start by introducing our reformulation of Nipkow’s (Pattern) Higher-order Rewriting
Systems (HRSs). We suppose we are given three infinite and disjoint sets of variables V,
refered to by 𝑥, 𝑦, 𝑧 or by letters in typewriter font such as a, b, t, (syntactic) constructors
C, refered to by 𝑐, 𝑑, 𝑓 , 𝑔, and sorts S, refered to by 𝑠. A head ℎ is either a constructor 𝑐
or a variable 𝑥. We define arities, scopes and signatures by the grammars

Arity ∋ 𝜎, 𝜏 ::= 𝛿 → 𝑠 Scope ∋ 𝛾, 𝛿 ::= · | 𝛾, 𝑥 : 𝜏 Sig ∋ Σ ::= · | Σ, 𝑐 : 𝜏

and abbreviate · → 𝑠 as simply 𝑠. We write ®𝑥𝛾 for the sequence of variables in 𝛾, and 𝛾.𝛿
for concatenation. A subscope 𝛾′ of 𝛾 is a subsequence of 𝛾, written 𝛾′ ⊑ 𝛾.

In other works, one usually calls 𝛾 a context and 𝜏 a simple type. We however prefer to
insist here on a different point of view, in which 𝜏 is seen as a higher-order generalization
of the regular notion of arity.

Given a fixed signature Σ, terms and spines are mutually defined by the following
inference rules. From the perspective of the _-calculus, our terms can be seen as the
simply-typed _-terms of some base type, and in 𝛽-normal [-long form (or canonical form).
However, our definition allows us to capture directly the terms of interest, and unlike [8]
we never need to speak about the non canonical forms, which play only a bureaucratic role.
The definition also clarifies the fact that higher-order rewriting is not (or at least does not
need to be seen as) a form of rewriting modulo, but instead rewriting in which one adopts
a different notion of substitution (as we will see next).

In the following, when convenient we abbreviate ℎ(Y) as ℎ. We write 𝑒 ∈ Expr 𝛾 when
either 𝑒 ∈ Tm 𝛾 𝑠 or 𝑒 ∈ Sp 𝛾 𝛿, and we call 𝑒 an expression. Finally, given a spine t ∈ Sp 𝛾 𝛿
and a variable 𝑥 : 𝛾𝑥 → 𝑠𝑥 ∈ 𝛿, we write t𝑥 ∈ Tm 𝛾.𝛾𝑥 𝑠𝑥 for the term in t at variable 𝑥.

ℎ : 𝛿 → 𝑠 ∈ Σ ∪ 𝛾
t ∈ Sp 𝛾 𝛿

ℎ(t) ∈ Tm 𝛾 𝑠 Y ∈ Sp 𝛾 ·
t ∈ Sp 𝛾 𝛿 𝑡 ∈ Tm 𝛾.𝛾′ 𝑠
t, ®𝑥𝛾′ .𝑡 ∈ Sp 𝛾 (𝛿, 𝑥 : 𝛾′ → 𝑠)

Example 2. If we take Σ = _ : (t : tm → tm) → tm,@ : (t : tm, u : tm) → tm, then
Tm (®𝑥 : ®tm) tm contains exactly the _-term with free variables in ®𝑥. This justifies why,
unlike in the original formulation of HRS, we do not consider 𝑥.𝑡 to be a term, as _(𝑥.𝑡)
corresponds to a term in the _-calculus, but 𝑥.𝑡 or 𝑦._(𝑥.𝑡) do not. Moreover, this makes
the restriction of rules to base types in [8] completely automatic in our formulation.

Remark 1. We present the syntax informally using names and 𝛼-equivalence as a conve-
nience, but we expect that everything can be formally carried out using deBruijn indices.

7

Substitution Because of our definition of terms, naive substitution would not work: for
instance, syntactically replacing 𝑥 by 𝑧.S(𝑧) and 𝑦 by 0 in 𝑥(𝑦) would yield (𝑧.S(𝑧)) (0), which
is not a valid term. We instead use hereditary substitution [6], which in this case recursively
replaces 𝑧 by 0, giving S(0). This is defined by the following clauses, by lexographic
induction on 𝛾2 and the expression being substituted. In the following, we write just 𝑒[t]
instead of 𝑒[t/𝛿] if no ambiguity arises.

[/𝛾2] : Tm 𝛾1.𝛾2.𝛾3 𝑠 → Sp 𝛾1 𝛾2 → Tm 𝛾1.𝛾3 𝑠

𝑥(v) [u/𝛾2] := 𝑣 [v[u/𝛾2]/𝛿] if 𝑥 : 𝛿 → 𝑠 ∈ 𝛾2 and u𝑥 = 𝑣

ℎ(v) [u/𝛾2] := ℎ(v[u/𝛾2]) if ℎ ∈ Σ, 𝛾1, 𝛾3

[/𝛾2] : Sp 𝛾1.𝛾2.𝛾3 𝛿 → Sp 𝛾1 𝛾2 → Sp 𝛾1.𝛾3 𝛿

Y[u/𝛾2] := Y

(v, ®𝑦.𝑡) [u/𝛾2] := v[u/𝛾2], ®𝑦.𝑡 [u/𝛾2]
Sometimes we need a spine v ∈ Sp 𝛾 𝛾 that satisfies 𝑒[v] = 𝑒 for all 𝑒. Normally one

takes v = ®𝑥𝛾 , but in general this is not a valid spine. Instead, we need to define the identity
spine id𝛾 ∈ Sp 𝛾 𝛾 by id(·) := Y and id𝛾,𝑥:𝛿→𝑠 := id𝛾 , ®𝑦𝛿 .𝑥(id𝛿). Intuitively, it [-expands
each variable in ®𝑥𝛾 so that the resulting sequence is indeed a valid spine. We can now
verify that 𝑒[id𝛾] = 𝑒 for all 𝑒 ∈ Expr 𝛾, and moreover id𝛿 [t] = t for all t ∈ Sp 𝛾 𝛿.

Rewriting Given an expression 𝑒, we write Pos 𝑒 for its set of positions and FPos 𝑒 for
its set of functional positions. For each 𝑝 ∈ Pos 𝑒 let 𝛾𝑝 ∈ Scope be the scope introduced
between the root and 𝑝, and 𝑠𝑝 ∈ S the sort at 𝑝. Given 𝑒 ∈ Expr 𝛾 and 𝑝 ∈ Pos 𝑒 we write
𝑒 |𝑝 ∈ Tm 𝛾.𝛾𝑝 𝑠𝑝 for the subterm at position 𝑝, and given a term 𝑡 ∈ Tm 𝛾.𝛾𝑝 𝑠𝑝 we write
𝑒{𝑡}𝑝 for the result of replacing 𝑒 |𝑝 by 𝑡 in 𝑒.

A pattern 𝑒 ∈ Patt 𝛾 𝛾′ is an expression 𝑒 ∈ Expr 𝛾.𝛾′ in which each variable 𝑥 ∈ 𝛾
appearing at position 𝑝 occurs applied to id𝛾′′ where 𝛾′′ ⊑ 𝛾′ .𝛾𝑝. We think of variables in

𝛾 as flexible and 𝛾′ as rigid. We write 𝑡 ∈ TmP 𝛾 𝛾′ 𝑠 for a term pattern and t ∈ SpP 𝛾 𝛾′ 𝛿
for a spine pattern. We have TmP 𝛾 𝛾′ 𝑠 ⊆ Tm 𝛾.𝛾′ 𝑠 and SpP 𝛾 𝛾′ 𝛿 ⊆ Sp 𝛾.𝛾′ 𝛿.

Given a pattern 𝑒 ∈ Patt 𝛾 𝛾′, we write ffv(𝑒) for the subscope of 𝛾 containing exactly
the free flexible variables of 𝑒. A pattern is linear if any 𝑥 ∈ ffv(𝑒) occurs only once.

A rewrite rule 𝛾 ⊩ 𝑡 ↦−→ 𝑢 : 𝑠 is given by 𝑡 ∈ TmP 𝛾 · 𝑠 and 𝑢 ∈ Tm 𝛾 𝑠 st 𝛾 = ffv(𝑡)
and 𝑡 is not a variable. It is linear if 𝑙 is a linear pattern. We define the rewrite relation
𝑒 −→ 𝑒′ for 𝑒, 𝑒′ ∈ Expr 𝛾 if there is a rewrite rule 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 and position 𝑝 ∈ Pos 𝑒 and
spine v ∈ Sp 𝛾.𝛾𝑝 𝛿 such that 𝑠 = 𝑠𝑝 and 𝑒 |𝑝 = 𝑙 [v] and 𝑒′ = 𝑒{𝑟 [v]}𝑝.
Critical pairs Given 𝑡, 𝑢 ∈ Tm 𝛿.𝛾 𝑠 we call 𝛿 | 𝛾 ⊩ 𝑡 =? 𝑢 : 𝑠 a unification problem. A
unifier is a spine v ∈ Sp 𝛿′ 𝛿 st 𝑡 [v] = 𝑢[v]. When 𝑡, 𝑢 ∈ TmP 𝛿 𝛾 𝑠, the problem has either
a most general unifer (mgu) or no unifier.

It is known that one of the difficulties when going from first order to higher-order
rewriting is adapting the definition of critical pairs. Given 𝛿𝑖 ⊩ 𝑙𝑖 ↦−→ 𝑟𝑖 : 𝑠𝑖 and 𝑝 ∈ FPos 𝑙1,
if one tries naively to unify 𝛿1.𝛿2 | 𝛾𝑝 ⊩ 𝑙1 |𝑝 =? 𝑙2 : 𝑠2, then because the variables in 𝛾𝑝
introduced between the root and 𝑝 in 𝑙1 do not appear in 𝑙2, any unifier must throw
dependencies on such variables away, which is not what is intended. Instead, we first
need to add 𝛾𝑝 as dependencies to the variables appearing in 𝑙2. This is achieved by a
substitution Nipkow calls a ®𝑥𝛾𝑝 -lifter, but it can also be understood more algebraically.

Given 𝛾, 𝛿 ∈ Scope, we define the exponential scope 𝛾 ↣ 𝛿 ∈ Scope by replacing
each entry 𝑥 : 𝛾𝑥 → 𝑠 ∈ 𝛿 by 𝑥∗ : 𝛾.𝛾𝑥 → 𝑠. We have an evaluation spine pattern
eval𝛾, 𝛿 ∈ SpP (𝛾↣ 𝛿) 𝛾 𝛿, containing at entry 𝑥 : 𝛾𝑥 → 𝑠 ∈ 𝛿 the argument ®𝑥𝛾𝑥 .𝑥∗ (id𝛾 , id𝛾𝑥).
For each t ∈ Sp 𝛾′ .𝛾 𝛿 we define its curryfication cur t ∈ Sp 𝛾′ (𝛾 ↣ 𝛿) by replacing each
entry ®𝑥𝛾𝑥 .𝑡 in t by ®𝑥𝛾.𝛾𝑥 .𝑡. The important property we have is that for all t ∈ Sp 𝛾′ .𝛾 𝛿,
cur t is the unique spine satisfying t = eval𝛾, 𝛿 [cur t/𝛾 ↣ 𝛿]. Our notation evidences the
fact that 𝛾↣ 𝛿 is the exponential object in the category of scope and spines, with eval𝛾, 𝛿
its corresponding evaluation morphism.

8

We can now define overlaps and critical pairs. A pattern 𝑒 ∈ Patt 𝛾 𝛾′ overlaps a rewrite
rule 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 at functional position 𝑝 ∈ FPos 𝑒 if the unification problem

𝛾.(𝛾′ .𝛾𝑝 ↣ 𝛿) | 𝛾′ .𝛾𝑝 ⊩ 𝑒 |𝑝 =? 𝑙 [eval𝛾′ .𝛾𝑝 , 𝛿] : 𝑠

has a unifier — in which case, it also has a most general one. A pattern overlap is proper
if 𝑒 = 𝑙 implies 𝑝 ≠ Y. A rule overlap is given by two rules 𝛿1 ⊩ 𝑙1 ↦−→ 𝑟1 : 𝑠1 and
𝛿2 ⊩ 𝑙2 ↦−→ 𝑟2 : 𝑠2 and a functional position 𝑝 ∈ FPos 𝑙1 st 𝑙1 properly overlaps 𝑙2 ↦−→ 𝑟2
at position 𝑝. Each rule overlap gives rise to a critical pair ⟨𝑟1 [v], 𝑙1{𝑟2 [eval𝛾𝑝 , 𝛿2]}𝑝 [v]⟩,
where v is the mgu of the associated unification problem.

Superdevelopments Like with many proofs of confluence, ours will employ Aczel’s
superdevelopments [1], defined by the following rules.

𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 ∈ R 𝑓 (u) = 𝑙 [v] t =⇒ u ∈ Sp 𝛾 𝛿 𝑓

𝑓 (t) =⇒ 𝑟 [v] ∈ Tm 𝛾 𝑠
ℎ : 𝛿 → 𝑠 ∈ 𝛾 or Σ

v =⇒ v′ ∈ Sp 𝛾 𝛿

ℎ(v) =⇒ ℎ(v′) ∈ Tm 𝛾 𝑠

Y =⇒ Y ∈ Sp 𝛾 ·
t =⇒ t′ ∈ Sp 𝛾 𝛿 𝑡 =⇒ 𝑡′ ∈ Tm 𝛾.𝛾𝑥 𝑠

t, ®𝑥𝛾𝑥 .𝑡 =⇒ t′, ®𝑥𝛾𝑥 .𝑡′ ∈ Sp 𝛾 (𝛿, 𝑥 : 𝛾𝑥 → 𝑠)
Recall that we have −→⊆=⇒⊆−→∗ and thus −→∗==⇒∗. Moreover, superdevelopments

are closed under substitution: if 𝑒 =⇒ 𝑒′ ∈ Expr 𝛾1.𝛾2.𝛾3 and u =⇒ u′ ∈ Sp 𝛾1 𝛾2 then
𝑒[u/𝛾2] =⇒ 𝑒′ [u′/𝛾2] ∈ Expr 𝛾1.𝛾3. The following proposition is at the heart of most
proofs of confluence by orthogonality [8]. We will also need it to show our criterion.

Proposition 1. Let 𝑒 ∈ Patt 𝛿 𝛾′ be a linear pattern that does not overlap any lhs of
R and suppose that for some v ∈ Sp 𝛾 𝛿 and 𝑒′ we have 𝑒[v/𝛿] =⇒ 𝑒′. Then we have
v′ =⇒ v′′ ∈ Sp 𝛾 ffv(𝑒) with v′ a subspine of v and 𝑒[v′′/ffv(𝑒)] = 𝑒′.
Corollary 1. Let 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 be a linear rule that does not overlap any rule in R. If
𝑙 [v] = 𝑓 (t) and t =⇒ t′ ∈ Sp 𝛾 𝛿 𝑓 , then there is v′ with v =⇒ v′ ∈ Sp 𝛾 𝛿 st 𝑙 [v′] = 𝑓 (t′).

3 A confluence criterion for non-left linearity

Define the order of an arity, of a scope and of a signature by ord(𝛾 → 𝑠) = 1 + ord(𝛾),
ord(·) = −1, ord(𝛾, 𝑥 : 𝜏) = max{ord(𝛾), ord(𝜏)}, ord(Σ, 𝑐 : 𝜏) = max{ord(Σ), ord(𝜏)}. Note
then that the variables of order zero are the ones whose arity is just a sort.

One can remark that for most rewrite systems of interest the underlying signature Σ
is of order ≤ 2, and variables of order > 0 are only needed for defining the rewrite rules.
For instance, this is the case of the _-calculus, where one needs a 1st order variable t to
play the role of a metavariable in the rule _(𝑥.t(𝑥))@u ↦−→ t(u), but when translating a
_-term into its HRS representation one only uses zero order variables. This is also the case
of most logics and type theories.

The restriction to signatures of order ≤ 2 is even baked into the definition of second-
order formalisms, such as in [5]. There, one distinguishes between variables (order 0) and
metavariables (order 1), and confluence of terms without metavariables is called object
confluence. In the following, we rephrase this notion in the setting of 2nd order HRSs.

Suppose now that the underlying signature Σ is of order ≤ 2. A term 𝑡 ∈ Tm 𝛾 𝑠 is an
object term 𝑡 if ord(𝛾) ≤ 0. A spine t ∈ Sp 𝛾 𝛿 is an object spine if ord(𝛾) ≤ 0 and ord(𝛿) ≤ 1.
We refer to them generically as object expressions. Note that if 𝑒 is an object expression
then all terms and spines appearing in 𝑒 are object expressions. Indeed, because Σ is of
order at most 2, each constructor 𝑓 can only bind 0-order variables. A rewrite system R
is object confluent if the rewriting relation restricted to object expressions is confluent.

Given two sorts 𝑠, 𝑠′ we say that 𝑠 is accessible from 𝑠′ (written 𝑠′ ⪯ 𝑠) if there is some
object term 𝑡 of sort 𝑠 and position 𝑝 such that 𝑡 |𝑝 is of sort 𝑠′. Given a rewrite system
R we write R ⪯ 𝑠 if for some 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠′ we have 𝑠′ ⪯ 𝑠. Note that this notion is only

9

interesting because we only consider object terms: if one has access to all variables, the
condition is always verified by taking 𝑡 = 𝑥(𝑦) with 𝑥 : 𝑠′ → 𝑠 and 𝑦 : 𝑠′. It is easy to see
that accessibility is decidable when the signature is finite.

Lemma 1. If 𝑡 ∈ Tm 𝛾 𝑠 is an object term and 𝑡 =⇒R 𝑡′ with R ⪯̸ 𝑠 then 𝑡 = 𝑡′.
The heart of our proof is the following proposition, which is very similar to Proposition 1

but replaces linearity by an inaccessibility condition.

Proposition 2. Let 𝑒 ∈ Patt 𝛿 𝛾′ be a pattern that does not overlap any lhs of R, with
ord(𝛿) ≤ 1 and such that for any 𝑥 : 𝛾𝑥 → 𝑠𝑥 ∈ 𝛿 occurring non-linearly in 𝑒 we have R ⪯̸ 𝑠𝑥 .
If for some v ∈ Sp 𝛾 𝛿 and 𝑒′ we have 𝑒[v/𝛿] =⇒ 𝑒′ with 𝑒[v/𝛿] an object expression, then
we have v′ =⇒ v′′ ∈ Sp 𝛾 ffv(𝑒) with v′ a subspine of v and 𝑒[v′′/ffv(𝑒)] = 𝑒′.

Proof. We replay the proof of Proposition 1, but in the case 𝑒 = t, ®𝑥𝛾𝑥 .𝑡 we use Lemma 1
to merge the substitution spines for t and 𝑡. □

Corollary 2. Let 𝛿 ⊩ 𝑙 ↦−→ 𝑟 : 𝑠 be a rule that does not overlap any rule in R, and such
that for any 𝑥 : 𝛾𝑥 → 𝑠𝑥 ∈ 𝛿 occurring non-linearly in 𝑙 we have R ⪯̸ 𝑠𝑥 . If 𝑙 [v] ∈ Tm 𝛾 𝑠
is an object term with 𝑙 [v] = 𝑓 (t) and t =⇒R t′ ∈ Sp 𝛾 𝛿 𝑓 then we have v =⇒R v′ ∈ Sp 𝛾 𝛿
and 𝑙 [v′] = 𝑓 (t′).

We are now ready to give our criterion.

Theorem 1. Let R𝑙 and R𝑛𝑙 be two rewriting systems on Σ with ord(Σ) ≤ 2 such that

(𝐴) R𝑛𝑙 and R𝑙 are object confluent

(𝐵) R𝑙 is left-linear

(𝐶) There are no critical pairs between R𝑙 and R𝑛𝑙

(𝐷) For each 𝛿 ⊩ 𝑡 ↦−→ 𝑢 : 𝑠 ∈ R𝑛𝑙 and 𝑥 : 𝛾𝑥 → 𝑠𝑥 ∈ 𝛿 with 𝑥 occurring non-linearly in 𝑡,
we have R𝑙 ⪯̸ 𝑠𝑥

Then R𝑙 ∪ R𝑛𝑙 is object confluent.

Proof. Because R𝑛𝑙 and R𝑙 are both object confluent, it suffices to show that R𝑛𝑙 and R𝑙

commute on object expressions. We show R𝑛𝑙
⇐==⇒R𝑙

⊆=⇒R𝑙 R𝑛𝑙
⇐= on object expressions,

by induction on the superdevelopments. The proof is essentially the same as the one for
orthogonal systems [8], but using Corollary 2 for the case 𝑓 (t) =⇒R𝑛𝑙

𝑟 [v]. □

We can now prove that the system of Example 1 is object confluent. First note that Σ is
second-order as required. Then, by taking R𝑙 = {_(𝑥.t(𝑥))@u ↦−→ t(u)} and R𝑛𝑙 = R_𝜋↑ \R𝑙 ,
we have that R𝑙 is confluent by orthogonality and R𝑛𝑙 is confluent by joining its critical pairs
and seeing that it is also strongly normalizing. Therefore, both are also object confluent.
Moreover, R𝑙 is linear and there are no critical pairs between R𝑙 and R𝑛𝑙 . Finally, we can
easily verify that there is no object term of sort lvl containing a subterm of sort tm, and
thus we have R𝑙 ⪯̸ lvl. Hence, by our criterion R_𝜋↑ = R𝑙 ∪ R𝑛𝑙 is object confluent.

Final remarks Our theorem could instead be stated for second-order formalisms like [5,
4] — these correspond roughly to the second-order fragment of HRSs. There, the notion of
object confluence is arguably more natural, as the restriction to 0 order variables is built
in the formalism.

Finally, the criterion is designed for situations in which we can split the rewrite system
into two parts: one that is s.n. but not left-linear (whose confluence can hopefully be shown
with the critical pair lemma), and one that is left-linear but (possibly) not s.n. (whose
confluence can hopefully be shown with criteria assuming left-linearity). Nevertheless, the
condition (𝐵) could also be replaced by a condition similar to (𝐷), making symmetric the
roles of the two systems in the theorem. However, we do not know of any interesting
examples for which this generalization would apply.

10

Acknowledgments The author would like to thank Gilles Dowek for his careful read-
ing of a preliminary version of the paper, Jean-Pierre Jouannaud, Gaspard Férey and
Frédéric Blanqui for their thoughtful remarks on this work, and the anonymous reviewers
for their very helpful comments and suggestions.

References

[1] Peter Aczel. A general Church–Rosser theorem. 1978.

[2] Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Untyped Conflu-
ence In Dependent Type Theories. working paper or preprint, April 2017.

[3] Gaspard Ferey. Higher-Order Confluence and Universe Embedding in the Logical
Framework. These, Université Paris-Saclay, June 2021.

[4] Makoto Hamana. Universal algebra for termination of higher-order rewriting. In Term
Rewriting and Applications: 16th International Conference, RTA 2005, Nara, Japan,
April 19-21, 2005. Proceedings 16, pages 135–149. Springer, 2005.

[5] Makoto Hamana, Tatsuya Abe, and Kentaro Kikuchi. Polymorphic computation
systems: Theory and practice of confluence with call-by-value. Science of Computer
Programming, 187:102322, 2020.

[6] Robert Harper and Daniel R Licata. Mechanizing metatheory in a logical framework.
Journal of functional programming, 17(4-5):613–673, 2007.

[7] Jan Willem Klop. Combinatory reduction systems. PhD thesis, Rijksuniversiteit
Utrecht, 1963.

[8] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence.
Theoretical computer science, 192(1):3–29, 1998.

[9] Vincent van Oostrom. Confluence for abstract and higher-order rewriting. Ph. D.
Thesis, Vrije Universiteit, 1984.

[10] Vincent Van Oostrom. Developing developments. Theoretical Computer Science,
175(1):159–181, 1997.

11

Higher-Order LCTRSs and Their Termination

Liye Guo and Cynthia Kop

Radboud University, Netherlands

1 Introduction

Logically constrained term rewriting systems (LCTRSs) [4, 1] are a formalism for analyzing
programs. In real-world programming, data types such as integers, as opposed to natural
numbers, and arrays are prevalent. Any practical program analyzing technique should be
prepared to handle these. One of the defining features of the LCTRS formalism is its native
support for such data types, which are not (co)inductively defined and need to be encoded if
handled by more traditional TRSs. Another benefit of the formalism is its separation between
logical constraints modeling the control flow and other terms representing the program states.

So far, program analysis on the basis of LCTRSs has concerned imperative programs since
LCTRSs were introduced as a first-order formalism. We are naturally curious to see if functional
programs can also be analyzed by constrained rewriting. What we present here is our ongoing
exploration in this direction: First, we define a higher-order variant of the LCTRS formalism,
which, despite the absence of lambda abstractions, is capable of representing some real-world
functional programs straightforwardly. Then we take a brief look at the termination problem for
this new formalism as termination analysis is by itself an important aspect of program analysis
as well as a prerequisite for determining some other properties.

2 LCSTRS

We start defining logically constrained simply-typed term rewriting systems (LCSTRSs) with
types and terms. We postulate a set S, whose elements we call sorts, and a subset Sϑ of S,
whose elements we call theory sorts. The set T of types and its subset Tϑ, called the set of
theory types, are generated as follows: T ::= S | (T → T) and Tϑ ::= Sϑ | (Sϑ → Tϑ). Right-
associativity is assigned to → so we can omit some parentheses in types. We assume given
disjoint sets F and V, whose elements we call function symbols and variables, respectively. The
grammar T ::= F | V | (T T) generates the set T of pre-terms. Left-associativity is assigned to
the juxtaposition operation in the above grammar so t0 t1 t2 stands for ((t0 t1) t2), for example.
We assume that every function symbol and variable is assigned a unique type. Typing works
as expected: if pre-terms t0 and t1 have types A → B and A, respectively, t0 t1 has type B.
Pre-terms having a type are called terms. We write t : A if a term t has type A. We postulate
a subset Fϑ of F , whose elements we call theory (function) symbols, and assume that theory
symbols have theory types. Terms constructed with only theory symbols and variables are
called logical terms. The set of variables in a term t, denoted by Var(t), is defined as follows:
Var(f) = ∅, Var(x) = {x } and Var(t0 t1) = Var(t0)∪Var(t1). A term t is called a ground term
if Var(t) = ∅. Note that ground logical terms always have theory types.

Logical terms are distinguished because they will be treated specially when we define the
rewrite relation. First, let us define the interpretation of ground logical terms. We postulate
an Sϑ-indexed family of sets (XA)A∈Sϑ

, and extend it to a Tϑ-indexed family of sets by letting
XA→B be the set of maps from XA to XB . Now we assume given a Tϑ-indexed family of maps
([[·]]A)A∈Tϑ

where [[·]]A assigns to each theory symbol whose type is A an element of XA and is

12

bijective if A ∈ Sϑ. Theory symbols whose type is a theory sort are called values. We extend
each indexed map [[·]]B to a map that assigns to each ground logical term whose type is B
an element of XB by letting [[t0 t1]]B be [[t0]]A→B([[t1]]A). We omit the type and write just [[·]]
whenever the type can be deduced from the context. [[t]] is called the interpretation of t.

A substitution is a type-preserving map from variables to terms. Every substitution σ
extends to a type-preserving map σ̄ from terms to terms. We write tσ for σ̄(t) and define it as
follows: fσ = f , xσ = σ(x) and (t0 t1)σ = (t0σ) (t1σ). Now we postulate a theory sort B and
theory symbols ⊥ : B and ⊤ : B. Let XB be { 0, 1 } and assume [[⊥]] = 0 and [[⊤]] = 1. A rewrite
rule ℓ → r [φ] is a triple where (i) ℓ and r are terms which have the same type, (ii) ℓ is not a
logical term, (iii) φ is a logical constraint, i.e., φ is a logical term whose type is B and the type
of each variable in Var(φ) is a theory sort, and (iv) the type of each variable in Var(r) \Var(ℓ)
is a theory sort. A substitution σ is said to respect a rewrite rule ℓ → r [φ] if σ(x) is a value
for all x ∈ Var(φ) ∪ (Var(r) \ Var(ℓ)) and [[φσ]] = 1. A set R of rewrite rules induces a rewrite
relation →R on terms such that t →R t′ if and only if one of the following conditions is true:

• t = ℓσ and t′ = rσ for some ℓ → r [φ] ∈ R and some substitution σ that respects
ℓ → r [φ].

• t = f v1 · · · vn where f is a theory symbol but not a value while vi is a value for all i, the
type of t is a theory sort, and t′ is the unique value such that [[f v1 · · · vn]] = [[t′]].

• t = t0 t1, t
′ = t0

′ t1 and t0 →R t0
′.

• t = t0 t1, t
′ = t0 t1

′ and t1 →R t1
′.

Logical constraints are essentially first-order—higher-order variables are excluded and theory
symbols take only first-order arguments. We adopt this restriction because many conditions
in functional programs are still first-order and solving higher-order constraints is hard. That
is not to say that higher-order constraints are of no interest; we simply leave them out of the
scope of LCSTRSs.

Below is an example LCSTRS:

init → fact n exit [⊤] fact n k → k 1 [n ≤ 0]

comp g f x → g (f x) [⊤] fact n k → fact (n− 1) (comp k (∗ n)) [n > 0]

Here init and exit denote the start and the end of the program, respectively. The core of the
program is fact, which computes the factorial function in continuation-passing style, and comp
is an auxiliary function for function composition. Integer literals and operators are theory
symbols. Note that we use infix notation to improve readability. The occurrence of n in the
rewrite rule defining init is an example of a variable that occurs on the right-hand side but not
on the left-hand side of a rewrite rule. Such variables can be used to model user input.

Let R denote the set of rewrite rules in the example and consider the rewrite sequence

fact 1 exit →R fact (1− 1) (comp exit (∗ 1)) →R fact 0 (comp exit (∗ 1)) →R comp exit (∗ 1) 1.

In the second step, no rewrite rule is invoked. Such rewrite steps are called calculation steps.
We can write →∅ for a calculation step. Terms s and t are said to be joinable by →∅, written
as s ↓∅ t, if there exists a term r such that s →∗

∅ r and t →∗
∅ r.

13

3 Termination

In order to prove that a given (unconstrained) TRS R is terminating, we usually look for a
stable, monotonic and well-founded relation ≻ which orients every rewrite rule in R, i.e., ℓ ≻ r
for all ℓ → r ∈ R. This standard technique, however, requires a few tweaks to be applied to
LCSTRSs. First, stability should be tightly coupled with rule orientation because every rewrite
rule in an LCSTRS is equipped with a logical constraint, which decides what substitutions are
expected when the rewrite rule is invoked. Therefore, we say that a type-preserving relation
≻ on terms orients a rewrite rule ℓ → r [φ] if ℓσ ≻ rσ for each substitution σ that respects
the rewrite rule. Second, the monotonicity requirement can be weakened because ℓ is never a
logical term in a rewrite rule ℓ → r [φ]. We say that a type-preserving relation ≻ on terms
is rule-monotonic if t0 ≻ t0

′ implies t0 t1 ≻ t0
′ t1 when t0 is not a logical term, and t1 ≻ t1

′

implies t0 t1 ≻ t0 t1
′ when t1 is not a logical term.

We present a tentative definition of HORPO [2] on LCSTRSs. For each theory sort A, we
postulate theory symbols ⊐A : A → A → B and ⊒A : A → A → B such that [[⊐A]] is a well-
founded ordering on XA and [[⊒A]] is the reflexive closure of [[⊐A]]. We omit the sort and write
just ⊐ and ⊒ whenever the sort can be deduced from the context. Given the precedence ▶,
a well-founded ordering on function symbols such that f ▶ g for all f ∈ F \ Fϑ and g ∈ Fϑ,
and the status stat, a map from F to { l,m2,m3, . . . }, the higher-order recursive path ordering
(HORPO) (≿φ,≻φ) is a family of type-preserving relation pairs on terms indexed by logical
constraints and defined as follows:

• s ≿φ t if and only if one of the following conditions is true:

– s and t are logical terms whose type is a theory sort, Var(φ) ⊇ Var(s) ∪ Var(t) and
φ |= ⊒ s t.

– s ≻φ t.

– s ↓∅ t.

– s is not a logical term, s = s1 s2, t = t1 t2, s1 ≿φ t1 and s2 ≿φ t2.

• s ≻φ t if and only if one of the following conditions is true:

– s and t are logical terms whose type is a theory sort, Var(φ) ⊇ Var(s) ∪ Var(t) and
φ |= ⊐ s t.

– s and t have the same type and s ▷φ t.

– s is not a logical term, s = x s1 · · · sn where x is a variable, t = x t1 · · · tn, si ≿φ ti
for all i and there exists i such that si ≻φ ti.

• s ▷φ t if and only if s is not a logical term, s = f s1 · · · sm where f is a function symbol,
and one of the following conditions is true:

– si ≿φ t for some i.

– t = t0 t1 · · · tn and s ▷φ ti for all i.

– t = g t1 · · · tn, f ▶ g and s ▷φ ti for all i.

– t = f t1 · · · tn, stat(f) = l, s1 · · · sm ≻l
φ t1 · · · tn and s ▷φ ti for all i.

– t = f t1 · · · tn, stat(f) = mk, k ≤ n, s1 · · · smin(m,k) ≻m
φ t1 · · · tk and s ▷φ ti for all i.

14

In the above, s1 · · · sm ≻l
φ t1 · · · tn if and only if ∃i ≤ min(m,n) (si ≻φ ti ∧ ∀j < i sj ≿φ tj),

≻m
φ is the generalized multiset extension of (≿φ,≻φ) (see [3]), and φ |= φ′ denotes, on the

assumption that φ and φ′ are logical constraints such that Var(φ) ⊇ Var(φ′), that for each
substitution σ which maps variables in Var(φ) to values, [[φσ]] = 1 implies [[φ′σ]] = 1.

The design is that ≻⊤ should orient a rewrite rule ℓ → r [φ] if ℓ ≻φ r. Then once a
combination of ⊐, ▶ and stat that guarantees ℓ ≻φ r for all ℓ → r [φ] ∈ R is present, we
can conclude that the LCSTRS R is terminating. The soundness of this method relies on the
following properties of ≻φ, which we must prove:

• ≻⊤ orients ℓ → r [φ] if ℓ ≻φ r.

• ≻⊤ is rule-monotonic.

• ≻⊤ is well-founded.

• →∅ ; ≻⊤ ⊆ ≻⊤.

Note that →∅ is well-founded because the size strictly decreases through every calculation step.
Consider the example LCSTRS given in the previous section. Any combination of ⊐, ▶

and stat that satisfies the following properties would witness the well-foundedness of →R:
[[⊐]] = λxy. x > 0 ∧ x > y, init ▶ fact ▶ comp, init ▶ exit and stat(fact) = l.

4 Future Work

LCSTRSs are still a work in progress. While the formalism itself is in a somewhat stable state,
the above method for termination analysis is in active development. First and foremost, we need
to prove that HORPO on LCSTRSs has the expected properties. When the theory is complete,
we would like to make a tool to automate the finding of HORPO on LCSTRSs. It would also be
interesting to explore other methods for termination analysis on the new formalism, including
StarHorpo [3] (a transitive variant of HORPO), interpretation-based methods and dependency
pairs. Another direction is to go beyond LCSTRSs by augmenting the formalism with lambda
abstractions or higher-order constraints.

References

[1] C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained rewriting induction.
ACM Transactions on Computational Logic, 18(2):14:1–14:50, 2017.

[2] J.-P. Jouannaud and A. Rubio. The higher-order recursive path ordering. In Proc. LICS, pages
402–411, 1999.

[3] C. Kop. Higher Order Termination. PhD thesis, VU Amsterdam, 2012.

[4] C. Kop and N. Nishida. Term rewriting with logical constraints. In Proc. FroCoS, pages 343–358,
2013.

15

Modular Termination for Second-Order Rewriting Systems

and Application to Effect Handlers

Makoto Hamana1

Faculty of Informatics, Gunma University, Japan
hamana@gunma-u.ac.jp

Abstract

We present a new modular proof method of termination for second-order computation.
The proof method is useful for proving termination of higher-order foundational calculi. To
establish the method, we use a variation of the semantic labelling translation and Blanqui’s
General Schema: a syntactic criterion of strong normalisation. As an application, we show
termination of a variant of call-by-push-value calculus with algebraic effects, an effect
handler and effect theory. This is based on the author’s paper “Modular Termination for
Second-Order Computation Rules and Application to Algebraic Effect Handler”, published
in Logical Methods in Computer Science, Vol. 18, Issue 2, No.8, June 14, 2022.

1 Introduction

Computation rules such as the β-reduction of the λ-calculus and arrangement of let-
expressions are fundamental mechanisms of functional programming. Computation rules for
modern functional programming are necessarily higher-order and are presented as a λ-calculus
extended with extra rules such as rules of let-expressions or first-order algebraic rules like
“0 + x → x”.

The termination property is one of the most important properties of such a calculus because
it is a key to ensuring the decidability of its properties. A powerful termination checking method
is important in theory and in practice. Termination is ideally checked modularly. However, in
general, strong normalisation is not a modular property [Toy87].

In this work we establish a new modular termination proof method of the following form: if
A is SN and B is SN with some suitable conditions, then C = A] B is SN. As an application
of the modular termination proof method, we give a termination proof of effectful calculus
using a variant of Levy’s call-by-push value (CBPV) calculus [Lev06] called multi-adjunctive
metalanguage (mam) [FKLP19] with effect handlers and effect theory [PP13].

2 Main Theorem

We use a formal framework of second-order computation based on second-order algebraic the-
ories [FH10]. This framework has been used in [Ham19, HAK20]. A computation system
(CS) is a pair (Σ, C) of a signature and a set C of computation rules. We write s ⇒C t to be
one-step computation using C.

Assumption 2.1. Let (ΣA] Θ,A) and (ΣA] ΣB] Θ,B) be computation systems satisfying:
(i) ΣA is the set of defined function symbols of A.
(ii) ΣB is the set of defined function symbols of B.
(iii) Θ is the signature for constructors of C, where C , A] B.
(iv) C is finitely branching.

16

(v) Both sides of each rule in C satisfy the ΣA-layer condition.

Definition 2.2. We say that a meta-term u satisfies the ΣA-layer condition if
• for every f(x.t) £ u with f ∈ ΣA, Fun(f(x.t)) ⊆ ΣA]Θ and t are second-order patterns,

and
• if u is a meta-application M [s1, . . . , sn], every si does not contain function symbols.

This condition has been called that u is solid [Ham07].

We say that A is accessible if for each f(x.t) ⇒ r ∈ A, every metavariable occurring in r is
accessible in some of t.

The General Schema [Bla00], [Bla16] is a termination criterion of higher-order rewrite rules.
The main theorem is proved by using a variant of higher-order semantic labelling [Ham07]

and the General Schema.

Theorem 2.3. (Modular Termination) Let (ΣA] Θ,A) and (ΣA] ΣB] Θ,B) be com-
putation systems satisfying Assumption 2.1 and the following.

(i) A is accessible.

(ii) (ΣA] ΣB] Θ] ΣProj,AProj) is SN (not necessarily by GS), where AProj is an extension of
A with projections of pairs 〈M1,M2〉 ⇒ Mi (i = 1, 2).

(iii) (ΣA] ΣB] Θ,B) is SN by the General Schema.

Then (ΣA] ΣB] Θ, A] B) is SN.

3 Application: Algebraic Effect Handler with Theory

As an application, we demonstrate that our theorem is useful to prove the termination of a
calculus with algebraic effects. The background of this section is as follows. Plotkin and Power
introduced the algebraic theory of effects to axiomatise various computational effects [PP02] and
they correspond to computational monads of Moggi [Mog88]. Plotkin and Pretnar formulated
algebraic effects and handlers [PP13], which provided an alternative to monads as a basis for
effectful programming across a variety of functional programming languages.

First, we formulate the multi-adjunctive metalanguage (mam) [FKLP19] for an effectful λ-
calculus, which is an extension of Levy’s call-by-push-value (CBPV) calculus [Lev06]. Secondly,
we provide an effect theory. Thirdly, we give an effect handler. We formulate mam as a second-
order computation system (ΣMAM] Θ, MAM). The signature ΣMAM consists of the following
defined function symbols

bang : U(c) → c

caseP : Pair(a1,a2),(a1,a2 → c) → c

case : Sum(a1,a2),(a1 → c),(a2 → c) → c

let : F(a),(a → c) → c

app : Arr(a,c),a → c

prj1 : CPair(c1,c2) → c1 ; prj2 : CPair(c1,c2) → c2

and the set of constructors Θ consists of

unit : Unit ; pair : a1,a2 → Pair(a1,a2)

inj1 : a1 → Sum(a1,a2) ; inj2 : a2 → Sum(a1,a2)

cpair : c1,c2 → CPair(c1,c2)

thunk : c → U(c)

17

return : a → F(a)

lam : (a → b) → Arr(a,b)

The set MAM of mam’s computation rules is given by1

(beta) lam(x.M[x])@V ⇒ M[V]

(u) bang(thunk(M)) ⇒ M

(prod1) prj1(cpair(M1,M2)) ⇒ M1

(prod2) prj2(cpair(M1,M2)) ⇒ M2

(caseP) caseP(pair(V1,V2),x1.x2.M[x1,x2]) ⇒ M[V1,V2]

(case1) case(inj1(V),x.M1[x],y.M2[y]) ⇒ M1[V]

(case2) case(inj2(V),x.M1[x],y.M2[y]) ⇒ M2[V]

(f) let(return(V),x.M[x]) ⇒ M[V]

Using this formulation, SN of MAM is immediate because it satisfies GS.
We define the signature ΣGl by

get : (N → F(N)) → F(N)

put : N,F(N) → F(N)

It consists of the operations get(v.t) (looking-up the state, binding the value to v, and
continuing t) and put(v,t) (updating the state to v and continuing t). The theory of global
state [PP02, FS14] can be stated as a computation system (ΣGl] {return}, gstate) defined
by

(lu) get(v.put(v,X)) ⇒ X

(ll) get(w.get(v.X[v,w])) ⇒ get(v.X[v,v])

(uu) put(V,put(W,X)) ⇒ put(W,X)

(ul) put(V,get(w.X[w])) ⇒ put(V,X[V])

These axioms have intuitive reading. For example, the axiom (lu) says that looking-up the
state, binding the value to v, then updating the state to v, is equivalent to doing nothing.
The axiom (ul) says that updating the state to V, then looking-up and continuing X with the
looked-up value, is equivalent to updating the state to V and continuing X with V.

Plotkin and Power showed that the monad corresponding to the theory of global state (of
finitely many locations) is the state monad [PP02]. Although (ΣGl] {return}, gstate) does
not satisfy GS, it can be shown to be SN by interpretation [HAK20].

An effect handler provides an implementation of effects by interpreting algebraic effects
as actual effects. The handler [KLO13, FKLP19] for effect terms for global states can be
formulated as a computation system (ΣGl] ΣMAM] ΣHandle, Handle) as follows.

handler : (N → F(N)), (Arr(N,F(N)) → F(N)), (N,F(N) → F(N)), F(N) → F(N)

(h r) handler(RET,GET,PUT,return(X)) ⇒ RET[X]

(h g) handler(RET,GET,PUT,get(x.M[x]))⇒ GET[lam(x.handler(RET,GET,PUT,M[x]))]

(h p) handler(RET,GET,PUT,put(P,M)) ⇒ PUT[P,lam(x.handler(RET,GET,PUT,M))]

Now, we consider the main problem of this section: SN of the whole computation system

(ΣGl] ΣMAM] ΣHandle] Θ, gstate] MAM] Handle) (1)

1t@s is the abbreviation of app(t,s).

18

The General Schema does not work to show SN of it because gstate does not satisfy GS.
Therefore, we divide it into

(ΣA] Θ,A) = (ΣGl] Θ, gstate),

(ΣA] ΣB] Θ,B) = (ΣGl] (ΣMAM] ΣHandle)] Θ, MAM] Handle).

The computation system (1) is not a disjoint union of A and B, and is actually a hierarchical
combination that shares constructors Θ. The lhss of Handle (⊆ B) involve defined function
symbols get,put in ΣA.

We apply the modularity Thm. 2.3. Assumption 2.1 is satisfied because the computa-
tion system (1) is finitely branching and satisfies the the ΣA-layer condition. We check the
assumptions. We define the well-founded order on types by

T (a1, . . . , a, . . . , an) >T a

for every n-ary type constructor T , and every type a, where the rhs’s a is placed at the i-th
argument for every i = 1, . . . , n.

(i) A = gstate is accessible. This is immediate because of the type comparison for the
arguments of get,put,return, which holds by N <T F(N).

(ii) (ΣA] Θ] ΣProj, gstate] Proj) is SN. This is proved by well-founded interpretation.

(iii) (ΣA] ΣB] Θ, MAM] Handle) is SN by GS. This is immediate by applying GS with the
precedence

handler >Σ lam

to the computation system. The rhss of MAM involve no function symbols and the rhss
of Handle involve handler,lam. To check that each recursive call of handler happens
with a smaller argument, here we use the structural subterm ordering [Bla16, Def.13] to
establish that M[x] is smaller than get(x.M[x]). Every metavariable is accessible.

Hence we conclude that the computation system (1) is SN.

References

[Bla00] F. Blanqui. Termination and confluence of higher-order rewrite systems. In Rewriting
Techniques and Application (RTA 2000), LNCS 1833, pages 47–61. Springer, 2000.

[Bla16] F. Blanqui. Termination of rewrite relations on λ-terms based on Girard’s notion of re-
ducibility. Theor. Comput. Sci., 611:50–86, 2016.

[FH10] M. Fiore and C.-K. Hur. Second-order equational logic. In Proc. of CSL’10, LNCS 6247,
pages 320–335, 2010.

[FKLP19] Y. Forster, O. Kammar, S. Lindley, and M. Pretnar. On the expressive power of user-defined
effects: Effect handlers, monadic reflection, delimited control. J. Funct. Program., 29:e15,
2019.

[FS14] M. Fiore and S. Staton. Substitution, jumps, and algebraic effects. In Proc of CSL-LICS’14,
pages 41:1–41:10, 2014.

[HAK20] M. Hamana, T. Abe, and K. Kikuchi. Polymorphic computation systems: Theory and
practice of confluence with call-by-value. Science of Computer Programming, 187(102322),
2020.

19

[Ham07] M. Hamana. Higher-order semantic labelling for inductive datatype systems. In Proc. of
PPDP’07, pages 97–108. ACM Press, 2007.

[Ham19] M. Hamana. How to prove decidability of equational theories with second-order computation
analyser SOL. Journal of Functional Programming, 29(e20), 2019.

[KLO13] O. Kammar, S. Lindley, and N. Oury. Handlers in action. In ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27,
2013, pages 145–158. ACM, 2013.

[Lev06] P. B. Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. High. Order
Symb. Comput., 19(4):377–414, 2006.

[Mog88] E. Moggi. Computational lambda-calculus and monads. LFCS ECS-LFCS-88-66, University
of Edinburgh, 1988.

[PP02] G. Plotkin and J. Power. Notions of computation determine monads. In FoSSaCS’02, pages
342–356, 2002.

[PP13] G. D. Plotkin and M. Pretnar. Handling algebraic effects. Logical Methods in Computer
Science, 9(4), 2013.

[Toy87] Y. Toyama. Counterexamples to termination for the direct sum of term rewriting systems.
Inf. Process. Lett., 25(3):141–143, 1987.

20

The algebraic λ-calculus is a conservative extension of the
ordinary λ-calculus

Axel Kerinec1 and Lionel Vaux Auclair2∗

1 Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030, France
2 Aix-Marseille Université, CNRS, I2M, France

Abstract

The algebraic λ-calculus is an extension of the ordinary λ-calculus with linear combi-
nations of terms. We establish that two ordinary λ-terms are equivalent in the algebraic
λ-calculus iff they are β-equal. Although this result was originally stated in the early 2000’s
(in the setting of Ehrhard and Regnier’s differential λ-calculus), the previously proposed
proofs were wrong: we explain why previous approaches failed and develop a new proof
technique to establish conservativity.

1 Introduction
The algebraic λ-calculus was introduced by the second author [Vau07; Vau09] as a generic
framework to study the rewriting theory of the λ-calculus in presence of weighted superpositions
of terms. The latter feature is pervasive in the quantitative semantics of λ-calculus and linear
logic, that have flourished in the past twenty years [Ehr05; Lai+13; DE11; Cas+18, etc.] and
the algebraic λ-calculus is meant as a unifying syntactic counterpart of that body of works.

The algebraic λ-calculus was actually obtained by removing the differentiation primitives
from Ehrhard and Regnier’s differential λ-calculus [ER03], keeping only the dynamics associated
with linear combinations of terms. This dynamics is surprisingly subtle in itself: for instance,
if 1 has an opposite in the semiring R of coefficients, then the rewriting theory becomes trivial.
We refer the reader to the original paper [Vau09] for a thorough discussion, and focus on the
question of conservativity only, assuming R is positive — i.e. if a+ b = 0 then a = b = 0. We
briefly outline the main definitions, keeping the same notations as in the former paper, so that
the reader can consistently refer to it for a more detailed account if need be.

Overview of the algebraic λ-calculus. The syntax of algebraic λ-terms is constructed in
two stages. We first consider raw terms, which are terms inductively generated as follows:

LR 3M,N, . . . ::= x | λx.M | (M)N | 0 |M +N | a.M

where a ranges over the semiring R (beware that we use Krivine’s convention for application).
We consider raw terms up to α-equivalence: LR contains the set Λ of pure λ-terms as a strict sub-
set. We then consider algebraic equality , on raw terms, which is the congruence generated
by the equations of R-module, plus the following linearity axioms:

λx.0 , 0 λx.(M +N) , λx.M + λx.N λx.(a.M) , a.λx.M
(0)P , 0 (M +N)P , (M)P + (N)P (a.M)P , a.(M)P

∗This work was partially supported by the French ANR project PPS (ANR-19-CE48-0014).

21

which reflects the point-wise definition of the sum of functions. Note that, without these
equations, a term such as (λx.M + λx.N)P has no redex.

The terms of the algebraic λ-calculus, called algebraic terms below, are then the ,-
classes σ = M of raw terms M ∈ LR. We extend syntactic constructs to algebraic terms (e.g.,
λx.M = λx.M , which is well defined because , is a congruence). Among algebraic terms, we
distinguish the simple terms, which are intuitively those without sums at top level: a term
σ is simple if σ = x for some variable x, or σ = λx.τ or σ = (τ) ρ where τ is itself simple
(inductively). In particular, M is simple as soon as M ∈ Λ. By definition, algebraic terms form
an R-module, and it is easy to check that it is freely generated by the set ∆R of simple terms:
we write R〈∆R〉 for the module of algebraic terms.

A seemingly natural way to extend the β-reduction →Λ of λ-terms to algebraic terms is to
define it contextually on raw terms, and then apply it modulo ,: among other issues with this
naïve definition, note that M , M + 0.N would reduce to M + 0.N ′ , M for any N →Λ N ′,
so that the obtained reduction would be reflexive and there would be no clear notion of normal
form. Ehrhard and Regnier’s solution is to rather consider two relations: → ⊂ ∆R × R〈∆R〉
defined contextually on simple terms with β-reduction as a base case; and →̃ ⊂ R〈∆R〉×R〈∆R〉
on algebraic terms, obtained by setting σ →̃ σ′ iff σ = a.τ + ρ and σ′ = a.τ ′ + ρ with τ → τ ′

and a 6= 0. Then →̃ is confluent [ER03; Vau09] and, provided R is positive, an algebraic term
is in normal form iff it is the class of a raw term without β-redex.

Note that, for any fixed point combinator Y , by setting ∞σ = (Y)λx.(σ + x), we obtain
∞σ ↔ σ+∞σ where↔ is the equivalence on R〈∆R〉 generated by the reduction relation →̃. In
case 1 ∈ R has an opposite −1, we can now exhibit the above-mentioned inconsistency of the
theory: 0 =∞σ + (−1).∞σ ↔ σ for any σ. From now on, we thus assume that R is positive.

Contributions. Our goal is to establish that, for any two λ-terms M and N ∈ Λ, we have
M ↔ N iff M ↔Λ N , where ↔Λ is the usual β-equivalence on λ-terms. For that purpose, it is
sufficient to establish a conservativity result on reduction relations rather than on the induced
equivalences: if M →̃∗ N then M →∗Λ N . This is our main result, theorem 4.3 below.

In the next section, we explain what was wrong with the previous two attempts, first by
Ehrhard and Regnier, then by the second author, to establish conservativity, and we outline the
new proof strategy we propose. The rest of the paper is dedicated to the proof of theorem 4.3.1

2 Two non-proofs and a new approach
Recall that an ARS (abstract rewriting system) is a pair (A,;) of a set A and binary relation
; ⊆ A × A. An extension of (A,;) is another ARS (A′,;′) such that A ⊆ A′ and ; ⊆
;′. This extension is conservative if, for every a1, a2 ∈ A, a1 ; a2 iff a1 ;′ a2. An
equational system is an ARS (A,∼) such that ∼ is an equivalence relation. Our goal is thus
to establish that the equational system (R〈∆R〉,↔) is a conservative extension of (Λ,↔Λ) —
here we consider the injection M ∈ Λ 7→M ∈ R〈∆R〉 as an inclusion.

In their paper on the differential λ-calculus [ER03], Ehrhard and Regnier claim that this
follows directly from the confluence of →̃, but this argument is not valid: →̃ does contain →Λ,
and it is indeed confluent, without any positivity assumption; but we have already stated that
↔ is inconsistent in presence of negative coefficients, so this observation cannot be sufficient.

1These results were obtained during a research internship of the first author, in the first half of 2019; they
were presented by the second author at the annual meeting of the working group Scalp (Structures formelles
pour le Calcul et les Preuves) in Lyon in October 2019. This collaboration was unfortunately disrupted by the
COVID-19 pandemic in the following year, which delayed dissemination to a wider audience.

22

M →∗Λ x
(v)

M ` x
M →∗Λ λx.N N ` τ

(λ)
M ` λx.τ

M →∗Λ (N)P N ` τ P ρ
(a)

M ` (τ) ρ

(0)
M 0

M ` σ M τ (+)
M a.σ + τ

Figure 1: Inference rules for the mashup relations

Ehrhard and Regnier’s mistake is certainly an erroneous application of a general conserva-
tivity result in Terese’s textbook [Ter03], missing the fact that Terese’s notion of extension is
more demanding: for Terese, (A,;) is a sub-ARS of (A′,;′) if A ⊆ A′ and, for every a ∈ A
and a′ ∈ A′, a ;′ a′ iff a′ ∈ A and a ; a′. The latter is strictly stronger than the mere
inclusion ; ⊆;′, and is indeed sufficient to deduce conservativity for the induced equational
systems from the confluence of the super-ARS [Ter03, Exercice 1.3.21 (iii)]. But (Λ,→Λ) is not a
sub-ARS of (R〈∆R〉, →̃), even when R is positive: for instance, if R = Q+ and M →Λ M ′ 6= M ,
we have M = 1

2M + 1
2M →̃ 1

2M + 1
2M

′ 6∈ Λ. So one must design another approach.
Given σ ∈ R〈∆R〉, one can consider the finite set of λ-terms Λ(σ) ⊂ Λ obtained by keeping

exactly one element in the support of each sum occurring in σ [Vau09, Definition 3.18]. The
second author tried to establish the conservativity of →̃∗ over →∗Λ by iterating the following:

Claim 2.1 ([Vau09, Lemma 3.20]). If σ →̃ σ′ and M ′ ∈ Λ(σ′) then there exists M ∈ Λ(σ) such
that M →∗Λ M ′.

But the latter claim is wrong! Consider, for instance, σ = (λx.(x)x) (y + z) →̃ σ′ =
(y+ z) (y+ z). We have M ′ = (y) z ∈ Λ(σ′) but no term in Λ(σ′) = {(λx.(x)x) y, (λx.(x)x) z}
β-reduces to M ′. Note that, in this counter-example, there is no M ∈ Λ such that M →̃∗ σ:
somehow, we must exploit this additional hypothesis to establish a correct version of claim 2.1.

Reasoning on →̃∗ directly is difficult, due to its definition as a reflexive and transitive closure.
The technique we propose involves the definition of a mixed-type relation M σ between a
λ-term M and a term σ ∈ R〈∆R〉: intuitively, M σ when σ is obtained by pasting together
terms issued from various reductions of M , and we say M σ is a mashup of such reductions.
In particular: M M ′ as soon as M →∗Λ M ′; and M σ + τ as soon as M σ and M τ .
We then show that is conservative over→∗Λ (lemma 3.4) and that M σ as soon as M →̃∗ σ
(lemmas 3.3 and 4.2): this ensures the conservativity of →̃∗ over→∗Λ (theorem 4.3). Our whole
approach thus rests on the careful definition of the mashup relation. Among other requirements,
it must behave well w.r.t. the structure of terms: e.g., if M σ then λx.M λx.σ.

3 Mashup of β-reductions
We define two relations ` ⊆ Λ ×∆R and ⊆ Λ × R〈∆R〉 by mutual induction, with the rules
of fig. 1. If σ ∈ R〈∆R〉, we write Supp(σ) ⊂ ∆R for its support set.

Lemma 3.1. We have M σ iff, for every σ′ ∈ Supp(σ), M ` σ′.
Proof. The forward implication is done by induction on the derivation of M σ, noting that
if σ′ ∈ Supp(aτ + ρ) with M ` τ and M ρ then σ′ = τ or σ′ ∈ Supp(ρ). For the reverse
implication, we can write σ =

∑n
i=1 ai.σi with σi ∈ Supp(σ) for 1 ≤ i ≤ n, and obtain a

derivation of M σ by induction on n.

23

M ` σ (s)
M σ

M →∗Λ λx.N N τ
(λ’)

M λx.τ
M →∗Λ (N)P N τ P ρ

(a’)
M (τ) ρ

M σ M τ (+’)
M a.σ + τ

Figure 2: Admissible rules for the mashup relations

Lemma 3.2. The rules of fig. 2 are admissible.

Proof. For (s), it is sufficient to observe that σ = 1σ + 0. For the other three rules, we reason
on the support sets, using lemma 3.1.

Lemma 3.3 (Reflexivity of `). For every M ∈ Λ, M `M .

Proof. By a straightforward induction on M , using the reflexivity of →∗Λ and rule (s).

Lemma 3.4 (Conservativity of). If M M ′ then M →∗Λ M ′.

Proof. Note that M ′ ∈ ∆R, hence M ` M ′ by lemma 3.1. The proof is then by induction on
M ′, inspecting the last rule of the derivation of M `M ′:

(v) If M →∗Λ x and M ′ = x then we conclude directly since M ′ = x.

(λ) If M →∗Λ λx.N and N ` τ with M ′ = λx.τ , then M ′ = λx.N ′ with τ = N ′. By induction
hypothesis, N →∗Λ N ′, hence M →∗Λ M ′.

(a) If M →∗Λ (N)P , N ` τ and P ρ with M ′ = (τ) ρ, then M ′ = (N ′)P ′ with τ = N ′

and ρ = P ′. In particular ρ ∈ ∆R, hence P ` ρ by lemma 3.1. By induction hypothesis,
N →∗Λ N ′ and P →∗Λ P ′, hence M →∗Λ M ′.

Lemma 3.5 (Compatibility with →Λ). If M →∗Λ M ′ ` σ then M ` σ. Similarly, if M →∗Λ
M ′ σ then M σ.

Proof. For the first implication, it is sufficient to inspect the last rule of the derivation M ′ ` σ,
and use the transitivity of →∗Λ. The second implication follows directly by induction on the
derivation of M ′ σ.

4 Conservativity of algebraic reduction
Lemma 4.1 (Substitution lemma). If M σ and P ρ then M [P/x] σ[ρ/x].

Proof. We prove the result, together with the variant assuming M ` σ instead of M σ, by
induction on the derivations of those judgements.

(v) If M →∗Λ y and σ = y then:

– if y = x, then M [P/x]→∗Λ x[P/x] = P ρ and we obtain M [P/x] ρ = σ[ρ/x] by
lemma 3.5;

– otherwise, M [P/x]→∗Λ y[P/x] = y, hence M [P/x] y = σ[ρ/x] by (v).

24

(λ) If M →∗Λ λy.N and N ` τ with σ = λy.τ (choosing y 6= x and y not free in P nor in ρ),
then M [P/x] →∗Λ λy.N [P/x] and, by induction hypothesis N [P/x] τ [ρ/x]: we obtain
M [P/x] λy.τ [ρ/x] = σ[ρ/x] by (λ′).

(a) If M →∗Λ (N1)N2, N1 ` τ1 and N2 τ2, with σ = (τ1) τ2, then we have M [P/x] →∗Λ
(N1[P/x])N2[P/x] and, by induction hypothesis, N1[P/x] τ1[ρ/x] and N2[P/x]
τ2[ρ/x]: we obtain M [P/x] (τ1[ρ/x]) τ2[ρ/x] = σ[P/x] by (a′).

(0) If σ = 0 then σ[ρ/x] = 0 and we conclude directly, by (0).

(+) If σ = a.τ1+τ2 withM ` τ1 andM τ2, then, by induction hypothesis,M [P/x] τ1[ρ/x]
and M [P/x] τ2[ρ/x], hence M [P/x] a.τ1[ρ/x] + τ2[ρ/x] = σ[ρ/x] by (a′).

Note that, by positivity, if σ = a.τ +ρ with τ ∈ ∆R and a 6= 0, then τ ∈ Supp(σ) ⊇ Supp(ρ).

Lemma 4.2 (Compatibility with →̃). Let M ∈ Λ and σ′ ∈ R〈∆R〉. For every σ ∈ ∆R such
that M ` σ → σ′ (resp. every σ ∈ R〈∆R〉 such that M σ →̃ σ′), we have M σ′.
Proof. The proof is by induction on the definition of the reduction σ → σ′ or σ →̃ σ′.

• If σ = (λx.τ) ρ ∈ ∆R and σ′ = τ [ρ/x], then the derivation of M ` σ must be of the form

M →∗Λ (N)P

N →∗Λ λx.N ′ N ′ ` τ
(λ)

N ` λx.τ P ρ
(a)

M ` (λx.τ) ρ

.

By lemma 4.1, we have N ′[P/x] σ′. Moreover, M →∗Λ (N)P →∗Λ (λx.N ′)P →Λ

N ′[P/x] and we obtain M σ′ by lemma 3.5.

• If σ = λx.τ and σ′ = λx.τ ′ with τ → τ ′, then the derivation of M ` σ must be of the
form

M →∗Λ λx.N N ` τ
(λ)

M ` λx.τ
.

We obtain N τ ′ by induction hypothesis, and we conclude by (λ’).

• If σ = (τ) ρ and σ′ = (τ ′) ρ′ with either τ → τ ′ and ρ = ρ′, or τ = τ ′ and ρ →̃ ρ′, then
the derivation of M ` σ must be of the form

M →∗Λ (N)P N ` τ P ρ
(a)

M ` (τ) ρ
.

We obtain N τ ′ and P ρ′ by induction hypothesis, and we conclude by (a’).

• If σ = a.τ + ρ and σ′ = a.τ ′ + ρ with τ → τ ′ and a 6= 0, then we have already observed
that τ ∈ Supp(σ) and Supp(ρ) ⊆ Supp(σ). Since M σ, we obtain M ` τ and M ρ by
lemma 3.1. The induction hypothesis gives M τ ′, hence M a.τ ′+ρ = σ′ by (+’).

Theorem 4.3 (Conservativity of →̃∗). If M →̃∗ N then M →∗Λ N .

Proof. Assume M →̃∗ N . By lemma 3.3 and (s), we have M M . By iterating lemma 4.2, we
deduce M N . We conclude by lemma 3.4.

Corollary 4.4 (Conservativity of ↔). If R is positive then M ↔ N iff M ↔Λ N .

Proof. Assuming M ↔ N , the confluence of →̃ ensures that there exist σ ∈ R〈∆R〉 and k ∈ N,
such that M →̃k

σ and N →̃∗ σ. It follows [Vau09, Lemma 3.23] that σ →̃∗ M↓k where τ↓ is
the term obtained by reducing all the redexes of τ simultaneously. Observing that M↓ = M↓,
we obtain N →̃∗ M↓k hence N →∗Λ M↓k by theorem 4.3, which concludes the proof.

25

References
[Cas+18] Simon Castellan, Pierre Clairambault, Hugo Paquet, and Glynn Winskel. “The con-

current game semantics of Probabilistic PCF”. In: LICS 2018. ACM Press, July
2018. doi: 10.1145/3209108.3209187.

[DE11] Vincent Danos and Thomas Ehrhard. “Probabilistic coherence spaces as a model
of higher-order probabilistic computation”. In: Information and Computation 209.6
(2011), pp. 966–991. doi: 10.1016/j.ic.2011.02.001.

[Ehr05] Thomas Ehrhard. “Finiteness spaces”. In: Mathematical Structures in Computer Sci-
ence 15.4 (2005), pp. 615–646. doi: 10.1017/S0960129504004645.

[ER03] Thomas Ehrhard and Laurent Regnier. “The differential lambda-calculus”. In: The-
oretical Computer Science 309.1-3 (2003). doi: 10.1016/S0304-3975(03)00392-X.

[Lai+13] Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. “Weighted re-
lational models of typed lambda-calculi”. In: LICS 2013. IEEE Computer Society,
2013, pp. 301–310. doi: 10.1109/LICS.2013.36.

[Ter03] Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science
55. Cambridge University Press, 2003.

[Vau07] Lionel Vaux. “On linear combinations of λ-terms”. In: RTA 2007. Vol. 4533. Lecture
Notes in Computer Science. Springer, 2007. isbn: 978-3-540-73447-5. doi: 10.1007/
978-3-540-73449-9_28.

[Vau09] Lionel Vaux. “The algebraic lambda calculus”. In: Mathematical Structures in Com-
puter Science 19.5 (2009), pp. 1029–1059. doi: 10.1017/S0960129509990089.

26

https://doi.org/10.1145/3209108.3209187
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.1017/S0960129504004645
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1007/978-3-540-73449-9_28
https://doi.org/10.1007/978-3-540-73449-9_28
https://doi.org/10.1017/S0960129509990089

Nijn/ONijn: A New Certification Engine for Higher-Order

Termination∗

Cynthia Kop, Deivid Vale, and Niels van der Weide

Institute for Computing and Information Sciences
Radboud University, Nijmegen, The Netherlands

{c.kop,deividvale,nweide}@cs.ru.nl

1 Introduction

In this short paper, we limn a new combination Nijn/ONijn for the certification of higher-order
rewriting termination proofs. A complete version of this work has been accepted for publication
at ITP 2023 [8]. We follow the following system design in Nijn/ONijn: Nijn [7] is the certifier,
a Coq library providing a formalization of the underlying higher-order rewriting theory and
ONijn [6] is a proof script generator, an application that when given a minimal description of
a termination proof, i.e., proof trace, outputs a Coq proof script. The proof script is a fully
formal description of the syntax signature used by the TRS and the specification of each rule in
the system together with the formal steps needed to express its termination. The proof script
then utilizes results from Nijn for checking the correctness of the traced proof. Examples of this
system design are the combinations Cochinelle/CiME3 [2] and CoLoR/Rainbow [1].

The schematic below depicts the basic steps for producing proof certificates using Nijn/ONijn.

Figure 1: Nijn/ONijn schematics

A termination prover in this schematic is an abstract entity responsible for producing proof
traces. It can be either a human, proving termination manually, or a termination tool like
Wanda [4], which uses programmed techniques and automated reasoning tools such as SAT/SMT
solvers. Whenever a prover outputs a proof trace, we can use ONijn to process it into a formal
proof script in Coq. At this moment, we have formalized the polynomial interpretation method.

∗This work is supported by the following NWO projects: “Implicit Complexity through Higher-Order
Rewriting”, NWO 612.001.803/7571; NWO VIDI project “Constrained Higher-Order Rewriting and Program
Equivalence”, NWO VI.Vidi.193.075; and “The Power of Equality” NWO OCENW.M20.380.

27

Notice that producing the certificates for only this proof method is an inherently incomplete
task, since it would require a method to solve inequalities over arbitrary polynomials, which is
undecidable in general.

While Nijn is the certified core part of our tool since it is checked by Coq, the proof script
generation implemented in OCaml (ONijn) is not currently certified and must be trusted. For
this reason, we deliberately keep ONijn as simple (small) as possible. The main task delegated
to ONijn is that of parsing the proof trace given by the termination prover to a Coq proof script
and perform sanitazation on the prover’s input, so that syntax errors are avoided in the proof
script. This approach does not pose significant drawbacks in our experience.

2 Encoding TRSs in Nijn

Let us encode Rmap in Coq using Nijn. This will be useful to demonstrate our choices in the
formalization and show how to express rewriting systems directly in Coq. The file containing the
full enconding can be found at Map.v. A simple example of a higher-order system is that of Rmap.
It represents the higher-order function that applies a function to each element of a list. Recall that
Rmap is composed of two rules: mapF nil → nil and mapF (consxxs) → cons (F x) (mapF xs).
These rules are under a typing context where F : nat ⇒ nat, x : nat, and xs : list. We start by
encoding base types.

Inductive base_types := TBtype | TList.
Definition Btype : ty base_types := Base TBtype.
Definition List : ty base_types := Base TList.

The abbreviations Btype and List is to smoothen the usage of the base types. There are three
function symbols in this system:

Inductive fun_symbols := TNil | TCons | TMap.

The arity function map_ar maps each function symbol in fun_symbols to its type.

Definition map_ar f : ty base_types

:= match f with

| TNil ⇒ List

| TCons ⇒ Btype −→List −→ List

| TMap ⇒ (Btype −→ Btype) −→ List −→ List

end.

So, TNil is a list and given an inhabitant of Btype and List, the function symbol TCons gives a
List. Again we introduce some abbreviations to simplify the usage of the function symbols.

Definition Nil {C} : tm map_ar C _ := BaseTm TNil.
Definition Cons {C} x xs : tm map_ar C _ := BaseTm TCons · x · xs.
Definition Map {C} f xs : tm map_ar C _ := BaseTm TMap · f · xs.

The first rule, mapF nil → nil, is encoded as the following Coq construct:

Program Definition map_nil :=
make_rewrite

(_ ,, •) _

(let f := TmVar Vz in Map · f · Nil)
Nil.

Notice that we only defined the pattern of the first two arguments of make_rewrite, leaving the
types in the context (_ ,, •) and the type of the rule unspecified. Coq can fill in these holes

28

https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html

automatically, as long as we provide a context pattern of the correct length. In this particular
rewrite rule, there is only one free variable. As such, the variable TmVar Vz refers to the only
variable in the context. In addition, we use iterated let-statements to imitate variable names.
For every position in the context, we introduce a variable in Coq, which we use in the left-
and right-hand sides of the rule. This makes the rules more human-readable. Indeed, the lhs
map F nil of this rule is represented as Map · f · Nil in code. The second rule for map is encoded
following the same ideas.

Program Definition map_cons :=
make_rewrite

(_ ,, _ ,, _ ,, •) _

(let f := TmVar Vz in let x := TmVar (Vs Vz) in let xs := TmVar (Vs (Vs Vz)) in
Map · f · (Cons · x · xs))
(let f := TmVar Vz in let x := TmVar (Vs Vz) in let xs := TmVar (Vs (Vs Vz)) in
Cons · (f · x) · (Map · f · xs)).

3 Practical Aspects of Nijn/ONijn Certification

In this section, we discuss the practical aspects of our verification framework. In principle one
can manually encode rewrite systems as Coq files and use the formalization we provide to verify
their own termination proofs. However, this is cumbersome to do so. Indeed, in the last section
we used abbreviations to make the formal description of Rmap more readable. A rewrite system
with many more rules would be difficult to encode manually. Additionally, to formally establish
termination we also need to encode proofs. The full formal encoding of Rmap and its termination
proof is found in the file Map.v.

3.1 Proof traces for polynomial interpretation

This difficulty of manual encoding motivates the usage of proof traces. A proof trace is a
human-friendly encoding of a TRS and the essential information needed to reconstruct the
termination proof as a Coq script. Let us again consider Rmap as an example. The proof trace
for this system starts with YES to signal that we have a termination proof for it. Then we have
a list encoding the signature and the rules of the system.

YES

Signature: [

cons : a -> list -> list ;

map : list -> (a -> a) -> list ;

nil : list

]

Rules: [

map nil F => nil ;

map (cons X Y) G => cons (G X) (map Y G)

]

Notice that the free variables in the rules do not need to be declared nor their typing information
provided. Coq can infer this information automatically. The last section of the proof trace
describes the interpretation of each function symbol in the signature.

29

https://nmvdw.github.io/Nijn/html/Nijn.Examples.Map.html

Interpretation: [

J(cons) = Lam[y0;y1].3 + 2*y1;

J(map) = Lam[y0;G1].3*y0 + 3*y0 * G1(y0);

J(nil) = 3

]

We can fully reconstruct a formal proof of termination for Rmap, which uses the theory
formalized in Nijn, with the information provided in the proof trace above. The full description
of proof traces can be found in [6], the API for ONijn. Proof traces are not Coq files. So we need
to further compile them into a proper Coq script. The schematics in fig. 1 describe the steps
necessary for it. We use ONijn to compile proof traces to Coq script. It is invoked as follows:

onijn path/to/proof/trace.onijn -o path/to/proof/script.v

Here, the first argument is the file path to a proof trace file and the -o option requires the file
path to the resulting Coq script. The resulting Coq script can be verified by Nijn as follows:

coqc path/to/proof/script.v

Instructions on how to locally install ONijn/Nijn can be found at [6].

3.2 Verifying Wanda’s Polynomial Interpretations

It is worth noticing that the termination prover is abstract in our certification framework. This
means that we are not bound to a specific termination tool. So we can verify any termination
tool that implements the interpretation method described here and can output proof traces in
ONijn format.

Since Wanda [4] is a termination tool that implements the interpretation method in [3], it is
our first candidate for verification. We added to Wanda the runtime argument --formal so it
can output proof traces in ONijn format. In [4] one can find details on how to invoke Wanda.
For instance, we illustrate below how to run Wanda on the map AFS.

./wanda.exe -d rem --formal Mixed_HO_10_map.afs

The setting -d rem sets Wanda to disable rule removal. The option --formal sets Wanda to
only use polynomial interpretations and output proofs to ONijn proof traces. Running Wanda
with these options gives us the proof trace we used for Rmap above. The latest version of Wanda,
which includes this parameter, is found at [5].

The table below describes our experimental evaluation on verifying Wanda’s output with the
settings above. The benchmark set consists of those 46 TRSs that Wanda outputs YES while
using only polynomial interpretations and no rule removal. The time limit for certification of
each system is set to 60 seconds.

The experiment was run in a machine with M1 Pro 2021 processor with 16GB of RAM.
Memory usage of Nijn during certification ranges from 400MB to 750MB. We provide the
experimental benchmarks at https://github.com/deividrvale/nijn-coq-script-generation.

Wanda Nijn/ONijn
Technique # YES Pct. Avg. Time # Certified Perc. Avg. Time
Poly, no rule removal 46 23% 0.07s 46 100% 4.06s

Table 1: Experimental Results

Hence, we can certify all TRSs proven SN by Wanda using only polynomial interpretations.

30

https://github.com/deividrvale/nijn-coq-script-generation

4 Conclusion and Future Plans

In this formalization effort, we were successful in certifying higher-order polynomial interpreta-
tions. This line of work is far from finished, however. The initial setup of Nijn/ONijn presented
here bootstraps the foundation of a full-fledged certification engine for more complex higher-order
termination proof techniques. For instance, incorporating the so-called higher-order dependency
pair framework is our next immediate future work plan. This will allow us to significantly
improve the number of systems we can certify.

References

[1] Frédéric Blanqui and Adam Koprowski. CoLoR: a Coq library on well-founded rewrite
relations and its application to the automated verification of termination certificates. Math.
Struct. Comput. Sci., 21(4):827–859, 2011. doi:10.1017/S0960129511000120.

[2] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier Urbain. Auto-
mated certified proofs with cime3. In Manfred Schmidt-Schauß, editor, Proceedings of the
22nd International Conference on Rewriting Techniques and Applications, RTA 2011, May
30 - June 1, 2011, Novi Sad, Serbia, volume 10 of LIPIcs, pages 21–30. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.RTA.2011.21.

[3] Carsten Fuhs and Cynthia Kop. Polynomial Interpretations for Higher-Order Rewriting.
In Ashish Tiwari, editor, 23rd International Conference on Rewriting Techniques and
Applications (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, volume 15
of LIPIcs, pages 176–192. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012. doi:
10.4230/LIPIcs.RTA.2012.176.

[4] Cynthia Kop. WANDA - a higher order termination tool (system description). In Zena M.
Ariola, editor, 5th International Conference on Formal Structures for Computation and
Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference), volume
167 of LIPIcs, pages 36:1–36:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.FSCD.2020.36.

[5] Cynthia Kop. Wanda’s source code repository, 2023. URL: https://github.com/hezzel/
wanda.

[6] Deivid Vale and Niels van der Weide. Onijn documentation, 2022. URL: https:

//deividrvale.github.io/nijn-coq-script-generation/onijn/index.html.

[7] Niels van der Weide and Deivid Vale. nmvdw/nijn: 1.0.0, May 2023. doi:10.5281/zenodo.
7913023.

[8] Niels van der Weide, Deivid Vale, and Cynthia Kop. Certifying higher-order polynomial
interpretations. In Proc. ITP 2023 (to appear), 2023. URL: https://doi.org/10.48550/
arXiv.2302.11892.

31

https://doi.org/10.1017/S0960129511000120
https://doi.org/10.4230/LIPIcs.RTA.2011.21
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.4230/LIPIcs.RTA.2012.176
https://doi.org/10.4230/LIPIcs.FSCD.2020.36
https://github.com/hezzel/wanda
https://github.com/hezzel/wanda
https://deividrvale.github.io/nijn-coq-script-generation/onijn/index.html
https://deividrvale.github.io/nijn-coq-script-generation/onijn/index.html
https://doi.org/10.5281/zenodo.7913023
https://doi.org/10.5281/zenodo.7913023
https://doi.org/10.48550/arXiv.2302.11892
https://doi.org/10.48550/arXiv.2302.11892

